The need for stochastic replication of ecological neural networks.
نویسندگان
چکیده
Artificial neural networks are becoming increasingly popular as predictive statistical tools in ecosystem ecology and as models of signal processing in behavioural and evolutionary ecology. We demonstrate here that a commonly used network in ecology, the three-layer feed-forward network, trained with the backpropagation algorithm, can be extremely sensitive to the stochastic variation in training data that results from random sampling of the same underlying statistical distribution, with networks converging to several distinct predictive states. Using a random walk procedure to sample error-weight space, and Sammon dimensional reduction of weight arrays, we demonstrate that these different predictive states are not artefactual, due to local minima, but lie at the base of major error troughs in the error-weight surface. We further demonstrate that various gross weight compositions can produce the same predictive state, suggesting the analogy of weight space as a 'patchwork' of multiple predictive states. Our results argue for increased inclusion of stochastic training replication and analysis into ecological and behavioural applications of artificial neural networks.
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملKnowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring
Phytoplankton biomass within the Saginaw Bay ecosystem (Lake Huron, Michigan, USA) was characterized as a function of select physical/chemical indicators. The complexity and variability of ecological systems typically make it difficult to model the influences of anthropogenic stressors and/or natural disturbances. Here, Artificial Neural Networks (ANNs) were developed to model chlorophyll a con...
متن کاملPrediction of Pervious Concrete Permeability and Compressive Strength Using Artificial Neural Networks
Pervious concrete is a concrete mixture prepared from cement, aggregates, water, little or no fines, and in some cases admixtures. The hydrological property of pervious concrete is the primary reason for its reappearance in construction. Much research has been conducted on plain concrete, but little attention has been paid to porous concrete, particularly to the analytical prediction modeling o...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 362 1479 شماره
صفحات -
تاریخ انتشار 2007